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The art of "modeling turbulence" is a needed tool in the construction of com- 
puter codes for turbulent flows. The state to which this art has been developed 
is inadequate, and quotations from authoritative sources support this point of 
view. The energy contained in the turbulent fluctuations, i.e., the turbulent 
energy, is often used as a parameter in the modeling process. The present article 
attempts to examine this quantity as it is being created, transported, and 
dissipated. For  this purpose experimental evidence from the author's own 
experiments (free jets), as well as theoretical conclusions from the elementary 
deductions of the basic equations, the concept of turbulent potential flow, and 
a general solution to the Navier-Stoke~Reynolds equations, is drawn to atten- 
tion. Recirculating flow is given special attention. The paper concludes with 
recommendations for principles that must be satisfied if improved modeling is 
to be achieved. These principles are necessary; whether they are also sufficient 
is open to question. 

KEY WORDS: turbulence modeling; recoverable work; potential turbulent 
flow; round jet; line source for turbulent energy; apparent dissipation; 
dissipation; redistribution of energy. 

1. I N T R O D U C T I O N  

It is a fact that the turbulent energy, i.e., the mean kinetic energy 
(q ~ , ,  ~ , ,  

= 5pu u + 5pv v + �89 of the turbulent motion (u', v,  and w'), is 
used as a parametric quantity in most numerical schemes used to analyze 
turbulent fluid motion. 3 It  is, furthermore, realized that the modeling used 
for the basic equation for this quantity is inadequate in many of its present 

1 Paper dedicated to Professor Joseph Kestin. 
2 Department of Mechanical Engineering, University of Trondheim, N-7034 Trondheim, 

NTH, Norway. 
3 Definitions of symbols are given under Nomenclature. 

637 

0195-928x/93/0700-0637507.00/0 �9 1993 Plenum Publishing Corporation 



638 Persen 

forms. Reference is made here to the review article by McCrosky et al. E 1 ], 
from which the following quotations are cited: 

Except for the limitations of turbulence modeling, the showcase problems of 
1974 can be solved routinely today. 

The validity (of numerical simulations) is essentially determined by the 
turbulence modeling .... 

The problem of turbulence modeling is probably the one with the least 
optimism,.... 

Attention is also drawn to the test cases presented by Bouffinier and 
Grandot ta  [-2] at the International Symposium on Refined Flow Modeling 
and Turbulence Measurements: 17 contributors had computed the specified 
flow using the k-e model. The results were confronted with experimental 
evidence and velocity profiles as well as distributions of turbulent kinetic 
energy were used as criterion for accuracy. The following is quoted from 
the summary: 

Concerning the mean velocity quite all the results compared well together and 
with the experiment. Several calculations gave similar results for the turbulent 
quantities, but all differed clearly from the measurements. 

It seems clear that the state of the art presented above prompts  a closer 
scrutiny of the procedures behind turbulent modeling. The purpose of this 
presentation is to draw attention to physical realities which ought to be 
considered in the modeling procedure. 

2. SOME FACTS ABOUT E N E R G Y  

The energy balance of a system is governed by laws of nature. The first 
law of thermodynamics is such a law. Since the system's kinetic energy is 
one form of energy to be incorporated into the energy balance the system's 
velocity must be found. Thus a second law of nature enters the picture: 
Newton's laws of motion. 

If the system under consideration is chosen as a fluid element with 
sides fix, 6y, and 6z, one may write the equations of motion as 

Du 8~ x 8Z xu aZ x~ 
P-5; = ax +-gS-y + 7 7  + p x 

Dv ~%x Oa~ ~y~ 
P-37 = ax &-z + + ~ y  + PY 

Dw 8zzx OTzy 0(~ z 

P Dt dx -~z + 
+ -~--y + p Z 

(1) 
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where the notations are those used by Kestin [3]. Attention is drawn here 
to the fact that the stresses acting on the element are unspecified. Neither 
the Stokes' relations nor any other phenomenological relation has been 
introduced, and consequently the deductions to be made with basis in these 
equations may be considered quite general. However, the body forces 
acting on the element will be assumed deducible from a potential (V), i.e., 

F= FX+j-T+/~Z = - g r a d  (V) (2) 

If equations in Eq. (1) are multiplied consecutively by the velocity 
components (u, v, w) and added, one obtains the mechanical energy 
equation 

D 

where WI is the work done by the stresses as the system moves without 
being deformed: 

By means of the equation of continuity (expressing the conservation of 
mass principle), 

Dp 
- -  + p div(g) = 0 (5) 
Dt 

the mechanical energy equation may be reformulated as 

Dt 092 + 2 pg div(g) + p6. grad(V) = W~ 
~ (6) 

Change of kinetic energy Change of potential energy 

This equation has been deduced in detail, even though it is part of 
most introductory texts, for the purpose of emphasizing the following 
points. 

1. Equation (6) shows that the stresses acting on the element under 
consideration may perform work that may be positive as well as 
negative. Whether it is one or the other depends on the elements 
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change in potential and kinetic energy. This means, in other 
words, that the stresses, which may be entirely viscous, may perform 
recoverable work. 

2. The mechanical energy equation expresses an energy balance that 
exists due to (or as a consequence of) the equations of motion. 
The energy that is being dissipated (in the mechanical sense) and 
converted to heat (considered as a non-mechanical form of energy) 
does not enter this equation. 

3. These two statements regarding the mechanical energy equation 
and the dissipated energy are quite generally valid and will be 
called upon when subsequently discussing the energy of the 
turbulent motion. 

The total work (W) done by the stresses acting on the system (the 
element) may be expressed as 

Ou ~v ~w ~u ~v 

0w ~u 0v Ow 
+ Zzy ~yy + zxz ~z + Zyz ~zz + az ~z (7) 

This equation defines the work (W2) done by the stresses as the system 
(the fluid element) deforms without moving. This work consists of the work 
done as the system undergoes a shape-true change of volume and the work 
done as the system undergoes a volume-true change of shape. This latter 
part represents the dissipation in a Newtonian fluid. The first part is zero 
in the case of an incompressible fluid. 

Finally, the first law of thermodynamics is applied to the system. It 
states that the system's change of energy is equal to the heat introduced 
into it minus the work done by the system on its surroundings. The 
system's internal energy is fi and the first law of thermodynamics may be 
formulated as 

D (p~+~pv  )+(p~+lpg2)d iv (~)+p~ 'grad(V)  
5 

J 

Change in internal, kinetic, and potential energy 

= -div(q) + W 

(8) 

where the heat flux into the system is given as 

q = rq ~ +fq~ + ~q~ (9) 



A Note on Turbulent Flow 641 

This equation may be reduced in complexity by observing the energy 
balance expressed through the mechanical energy equation, Eq. (6), and 
the continuity equation, Eq. (5). The simplified form of Eq. (9) will then be 

D// 
p ~--~= -div(q) + W2 (10) 

This equation is generally valid and attention is again drawn to the fact 
that no phenomenological relation has been introduced. The only limita- 
tion is in the assumed conservation of mass which excludes nuclear reac- 
tions and in the adopted heat flux which excludes internal heat sources. 

The energy equation (the first law of thermodynamics) in its form as 
Eq. (10) shows that the work done (W2) as the system undergoes a 
volumetrue change of shape is creating a rise in the systems internal energy, 
i.e., dissipation is always creating heat (Newtonian fluid). The work done 
as the system moves without deforming does not enter the energy equation, 
Eq. (10). 

The final conclusion is that an equation which expresses the system's 
energy balance and contains the dissipation must also contain terms which 
express the change in the system's internal energy. 

The facts about energy highlighted here are well-known to the 
profession. Yet a number of modeling efforts when the turbulent energy 
is concerned do not seem to take account of these facts, as demonstrated 
subsequently. 

3. RECOVERABLE WORK 

The introduction of the concept of viscous forces performing recover- 
able work may be illustrated by a simple example. 

Assume an infitely extended flat plate above which an infinitely 
extended viscous (Newtonian) fluid is located. Assume, furthermore, that 
the flat plate performs a rectilinear harmonic oscillation. The velocity of the 
plate is thus given by U p l a t  e : 

Uplate = Uo cos(cot) (11 ) 

The velocity field set up in the fluid is such that it may be charac- 
terized by all streamlines being parallel to the x-axis. Thus, 

u(y, t ) r  v=0,  w = 0  (12) 

840/14/4-3 
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The element near an oscillating plate. 

Figure 1 shows a fluid element in the neighborhood of the plate. The 
only forces performing work during a given time interval 6t are the shear 
stresses rxy. The total work done (per unit time) will be 

W d x d y = - z ~ u d x +  rxy cy (13) 

from which one obtains 

8u 3Zxy (14) W =  L~y -~y + U gy 

The two types of work done are here easily identified: 

?~rxv ~2u 
W1 = u ~ = ~u ~y 2 

2 

W 2  = • x y  - -  - -  ~y- \~y/ 

(15) 

where the Stokes hypothesis for the relation between the stresses and the 
rate of strain (velocity field) has been introduced. 

The solution to the flow field is given by Kestin I-3] and is recalled 
here: 

where 

u(y, t) = Uoe ~ cos(e)t -- q) (16) 

,7=y (17) 
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Introduction of Eq. (16) into Eq. (15) will give 

Wx = -�89 2, sin(2(~ot- q)) (18) 

The mechanical energy equation, Eq. (3) or Eq. (6), will, in the present 
case, take the form 

- ~ s p v - ) :  Wl (19) 

It is thus seen that the kinetic energy of the system (the fluid element) will 
oscillate, that the work done by the stresses is stored in the kinetic energy 
as an increase when the work is positive, and that this work is recovered 
as the kinetic energy decreases 

This is a point to be recalled when discussing the modeling of the 
turbulent energy. 

4. EXPERIMENTAL EVIDENCE I 

The energy of the turbulent motion, i.e., the kinetic energy contained 
in the turbulent fluctuations (in the Reynolds sense), has been measured in 
numerous flow situations. It is not the intention of this presentation to give 
an extensive survey of these but rather to extract from the literature a few 
results which throw light on the problem at hand. 

Before looking at the details of experimental evidence it is necessary to 
ascertain that the uncertainty in experimental determination of turbulent 
fluctuations is clearly understood. This uncertainty originates from the fre- 
quency limitations of the equipment used, and the measured fluctuations 
may be as much a function of the characteristics of the equipment as they 
may reflect physical reality. Thus, only when the average values may be 
shown not to be dependent on the frequency limitations of the equipment 
may physical significance be attached to the measured value. 

The case of free turbulence as given in the free jet into still fluid is a 
case which is well suited for the study of the turbulent energy. Persen [4] 

reports measurements of the quantities x/u~du ' and x/v--~v' in the case of a 
plane (two-dimensional jet). Guided by the theoretical approach, which 
incorporates a general solution, he was able to show that both quantities 
decay in the same way with downstream distance and that, consequently, 
a similarity condition characterizes the turbulent flow field. Thus, even in 
the near field of the jet, similarity (within an acceptable accuracy) exists 
both for the velocity field and for the turbulent energy. This has a profound 
significance as will be demonstrated subsequently. 
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The experiment referred to in Ref. 4 incorporates the use of two jet 
opening geometries: one sharp-edged and one rounded opening. This leads 
to a difference in the characteristics of the jet flow as sought illustrated in 
Fig. 2. This difference does not influence the similarity properties of the 
velocity profiles but does, indeed, influence the actual values of the nor- 
malizing distances such as the jet's half-width and the characteristic length 
downstream. This is a significant observation for the present investigation 
because it indicates that the absolute values of the different terms of the 
turbulent energy are directly dependent on their boundary conditions, i.e., 
on conditions at the point of origin of the fluctuations. 

Figure 3 shows the measured distribution of the quantity x/u'u', 
where the crossflow coordinate r/is defined as 

= y / b l / ~ ( x )  (20) 

and where bl/2 is the jet's half-width determined from the measured velocity 
profiles. The way in which the decay occurs with downstream distance is 
suggested described by the expression 

,fu'u') (21) ~ ;  = U(x)  e -r/2/2 ~- A(.x)(e -0"9("- 1'2-~ e o.9(r/+ 1, 2) 

where x is the downstream distance and ~ is its dimensionless form: 

= (X -- Xo)/Lchar (22)  

Fig. 2. 

._____,~Core flow~ ~ Core Flow 

U e ~ 1.1" "I Ue~ 

Sketch illustrating the difference in the flow field with the sharp- 
edge (a) and the rounded-edge (b) nozzle. 
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Fig. 3. Profiles showing the crossflow distribution of ~ ' ~  at 
different downstream locations (plane jet). 

A proposed hypothesis about the propagation of a disturbance is used 
to suggest the following expression for the unknown function A(x): 

A(x) = (1 + ~2)-1/4 (23) 

Since the same behavior is found for both the j u ' u  ----~ and the ~ / ~  
data, one may by inference conclude that a corresponding behavior must 
apply for the turbulent energy. Thus a study of Eq. (21) will give informa- 
tion also on the latter quantity. 

5. THE T U R B U L E N T  P O T E N T I A L  FLOW 

Attention is drawn here to the fact that potential flow is characterized 
by a condition of kinematic nature being placed on the flow field, i.e., the 
vector ficld representing the flow be irrotational. This conccpt may of 
course also be applied to the turbulent flow as a condition on the mean 
flow vector field. The conditions for this to be feasible were investigated by 
Persen [5].  It should be emphasized that whether the flow is laminar or 
turbulent, potential flow does not imply that energy is not being dissipated. 
It does, however, mean that the recoverable work done by the mean 
viscous forces as the fluid element moves is zero. If the reason for this is 
examined, one finds that three conditions lead to this conclusion: 

1. The viscous stresses are linked to the flow field through the Stokes 
hypothesis. 
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2. The mean velocity vector's divergence is.zero (continuity of an 
incompressible fluid). 

3. The velocity vector is assumed to be derivable from a flow 
potential (irrotationality). 

Comparable conditions are not valid for the Reynolds stresses. This 
indicates, therefore, the possibility that the recoverable work done by the 
Reynolds stresses may be different from zero even when the mean flow field 
is irrotational. 

In Ref. 5 a necessary (but not necessarily sufficient) condition for the 
existence of a turbulent potential flow field is given. Assuming this condi- 
tion to be met, one may proceed to the introduction of the stress functions 
Z~, 22, and )~3, from which the resulting force on the element may be 
deduced. This in turn leads to the introduction of the "stress potential" A, 
defined as 

1 2 A = �89 + 5V (Zl + )~2 + 23) (24) 

The energy equation for the flow (stationary case) may then be formulated: 

D--~t pg2 + og.grad(V)= -g.grad(p) + g.grad(A) (25) 

I II III IV 

where V is the potential for the body forces acting on the element. Each 
term in this equation is to be interpreted as follows: 

(i) change per unit volume and unit time of the element's kinetic 
energy, 

(ii) change per unit volume and unit time of the element's potential 
energy, 

(iii) work done (per unit volume and unit time) by the pressure 
acting on the element as it moves without deforming, and 

(iv) work done (per unit volume and unit time) by the Reynolds 
stresses as the element moves without deforming. (The corre- 
sponding work done by the viscous forces is zero). 

The details of the further deductions are not recapitulated here but the 
following results are drawn to attention. 

a. If the flow under consideration is a recirculating one, i.e., the 
streamlines form closed loops, the value of A may change along a 
streamline, but any positive change must be compensated by an 
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b. 

equal negative change so that the total change is equal to zero 
when returning to the point of departure. Since A depends on 
the turbulent energy, a corresponding statement applies to this 
quantity. 

If the situation of a uniform potential flow with parallel steamlines 
is considered, the equations of motion in integrated form simplify 
to 

p + A = constant (26) 

Since A in this case is dependent exclusively on the turbulent 
energy, this reflects the fact that the pressure may act as a 
"storage" of turbulent energy and that this storage may be both 
emptied and filled as the turbulent energy changes. The way in 
which this happens is unknown. 

6. A G E N E R A L  C A S E  

The Navier-Stokes-Reynolds equations for turbulent flows may be 
formulated as follows: 

0 -o 0 
~ (~ x --  P --  pu '  u' --  p~2)  + YY ( %  _ pu ' v '  --  p ~ )  

0 
+ ~ (~x~ - p u ' w '  - p C ~ )  = o 

8 (~xy _ pu ' v '  - pu~)  + 8 
~y  (6  ~ - p - pv '  v' - pg2)  ~---s 

0 
+ ~ (~y= - p v ' w '  - p ~ )  = o 

~ x  ( %  - p u ' w '  - p ~ , )  + pv  'w '  --  p g # )  

0 
+ ~ z  (~o  _ p _ p w ' w '  - p ~ )  = o 

(27) 

where again the notations used are those of Kestin [3].  In this form the 
equations may be conceived of as d'Alembert's formulation of dynamic 
equilibrium, and as shown by Persen [4],  a general solution to the equa- 
tions may be found. However, the general solution that can be established 
does not solve the closure problem. The solution does, on the other hand, 
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give information on the distribution of the turbulent energy in special cases 
such as the one treated by Persen [4] (the plane turbulent jet). This is 
referenced in Section 4. Supplementary experimental evidence is examined 
in Section 7. 

At present, attention is drawn to the form of Eqs. (27), which suggests 
that a relation between the elements of the two matrices A and B might be 
found: 

I , [ ] 
(t(~, (tf, Et~ ] u' u', u ' v', u ' w'  

A =  ~tO, ~ ,  ~ , B =  u' v', v' v', v 'w '  (28) 

(t~, ~ ,  ~ d  u'w' ,  v 'w' ,  w 'w '  

This suggested relationship is also made plausible by the contention that 
the energy in the main flow and the energy in the turbulent fluctuations 
decay very much in the same way under conditions where the effect of wall 
regions are negligible. A further study of this is referenced below. 

7. EXPERIMENTAL EVIDENCE II 

The free jet, i.e., the flow out of a nozzle into still fluid with no guiding 
walls, represents a flow which is very well suited for an experimental 
examination of the distribution of energy in the flow. However, the fact 
that the finite width of a slit sets a limit to the region in which a plane jet 
maintains its two-dimensionality makes the plane jet less suited for 
experimental investigation. Presently, therefore, the round jet as invest- 
igated by Persen [6] is examined and the following observations are made: 

1. The jet is produced from a cutoff tube of 42-mm diameter. 

2. The distance (Zo) downstream of the nozzle beyond which the 
velocity profiles exhibit self-similarity is determined from the 
downstream distribution of the jet's half-width. 

3. In the region of self-similarity (z > Zo) the jet's half-width (bl/2) 
and the centerline velocity (Uc) follow the general expressions 

__ (0) 32)1/2 b l / 2  - -  bl/2(1 + (29) 

Wc = u~~ + ~ : ) - "  (30) 

where r is the dimensionless downstream distance and q is the 
dimensionless radial distance: 

= (Z - -  Zo)/Lchar (31  ) 

q = rib m (32) 



A Note on Turbulent Flow 649 

. The velocity components in the self-similar region are given as 

~z = U~.f(,) (33) 

17(0)1~ (0) ~2) - -n - -  1/2 
Vr = ~Jc u1/2 2~ (1  "~- F(~I)  ( 3 4 )  

t c h a r  

where f(r/) is the so far unspecified mathematical expression for 
the hat curve representing the self-similar velocity profile and 
where 

F ( q ) =  ( - n  + 1) s f ( s ) d s - ~ q f ( q )  (35) 

5. The total kinetic energy (Ez) in the jet's axial velocity at any given 
profile is obtained by integration: 

Ez 1 -2 = 5pvz2~r dr (36) 

or dimensionless 

E * =  (o) (o) 2 - 2 . + 1 1  Ez /gp[Uo  bl/:] = (1 + (2) q[f(r/)]-~dq 
a0  

(37) 

One observes here that the integral in this expression must be a 
constant and that, consequently, n > �89 since the energy cannot be 
increasing with downstream distance. If n = �89 the energy contained 
in the axial velocity remains constant downstream, and the apparent 
decay is caused exclusively by a redistribution of the energy. For 
n >  �89 a real dissipation occurs in addition to the redistribution. 

The total kinetic energy (Er) in the jet's radial velocity at any 
given profile will be 

E r =  ~ p v ; 2 ~ r &  (38) 

or dimensionless 

Er* = Er/ztp [ rr (o)1~ (o) 1 z ~ c  ~ 1/2 J 

\ L c h a r /  ~0 
(39) 
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Again, conditions must be placed on the asymptotic behavior of 
the function f(r/) such that the integral in Eq. (39) is a constant. 
One may then conclude that the energy contained in the radial 
velocity initially does not decay in the same way as that contained 
in the axial velocity. Eventually, though, they both decay as 
~-4n+2 for large values of 3. 

These analytic considerations are now supplemented by experimental 
results. The spread of the jet's hal f -widthas  indicated by Eq. (29) is 
experimentally supported by data as shown in Fig. 4. The data for the 
centerline velocity are exhibited in Fig. 5. By a best-fit procedure the 
following results are found: 

Lchar = 224 .5  m m  

z0 = 117 mm 

b(O) _ 22.8 mm 1/2 - -  

U~ ~ = 9.43 m -  s -  1 

n = 0.5441 

(40)  

It is important to notice that n > �89 indicates that the apparent decay 
of the energy in the jet's main flow is caused by both a redistribution 
downstream and a real dissipation. 

120 

g6 
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61 
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Fig. 4. The spread of the plane jet with downstream distance illustrated by the 
variation in the jet's half-width. 
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Fig. 5. The decay in the centerline velocity with increasing downstream 
distance. 

Having in this way described the energy distribution in the main flow 
of the jet, it becomes important to investigate the distribution of the energy 
in the turbulent fluctuations�9 

Foremost in these considerations must be the question of whether or 
not the dimensionless distances ~ and r/, determined with origin in the 
velocity data, also may be used in the description of the turbulent energy 
distribution. The answer lies in Fig. 6, where a series of profiles of the 
measured turbulent energy (x/u'u')  in the axial fluctuation component is 
plotted using the dimensionless crosswise variable ~?. There is an original 
skewness in the profile which is damped out downstream. 

The main features of the profiles (when plotted in this way) are 
illustrated by the plotting of the two maximum amplitudes and their loca- 
tion as done in Figs. 7 and 8. It is seen how the two maxima gradually 
become equal with increasing downstream distance, whereas their location 
becomes constant. 

To describe the behavior of the profiles the following expression is 
adopted for the profile: 

.x/u'~ = A(~) H(r/) (41) 

where 

H(q) = e ~.(,-,o~+ e-~.(,+,0) (42) 
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These analytic expressions give symmetrical profiles and Fig. 9 shows how 
the data of profile 5 are approximated by the analytic expressions with the 
parameters ~ and r/0 having been determined by a best-fit procedure. 

When such procedures have been completed for all profiles, one will 
have data showing how A(~) varies with downstream distance. This means 
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that the apparent decay in the energy in the turbulent fluctuations in the 
axial direction may be founc by assuming A(~) to follow the law 

A2(~) = A2(1 + ~2)~ (43) 

where m is determined by a best-fit procedure. The result is given in Fig. 10 
and m is determined to 

m = -1.0921 (2n-- 1.0882) (44) 

This is very close to the value (2n) determined for the energy in the main 
flow and supports the contention that the turbulent energy behaves very 
much like the energy in the main flow. 

Before proceeding to draw conclusions a certain feature of the flow 
must be drawn to attention. The maxima of the fluctuation profiles indicate 
a disturbance originating at t /= 1, i.e., at the wall of the tube representing 
the nozzle. For that purpose a profile was measured as close to the nozzle 
as practically possible (10 mm). This profile and the corresponding profile 
measured in the region before the profile start to become self-similar 
(z < Zo) as shown in Fig. 11. It is observed that the profiles are those to be 
expected with a singularity occurring at the wall of the tube exit. This is 
where the flow field may be conceived of as having a nonanalytic boundary 
condition. The observation serves as an illustration to the creation of 
intense turbulent activity at a wall. Further comments are advanced in the 
concluding section. 

8. CONCLUSION 

Before actually commenting on turbulence modeling, it may be 
worthwhile to give some thought to whether or not turbulent modeling 
really is all that important. Lumley [7] organized a workshop in 1989 with 
the specific objective of discussing where turbulence research is headed. It 
is undeniable that many  claims have been made over the years that the 
final answer is now near. Coherent structures, chaos, etc., are milestones 
along this road. Have the Navier-Stokes-Reynolds equations really lost 
their significance? ls a solution to these equations really of no interest any 
more? And should turbulence modeling be left at its present state because 
it serves the profession well as it is? 

The answer to these questions will have to be ambiguous because it 
depends on the basic point of view of the one who answers. Many com- 
puter codes in use today are based on turbulence modeling that renders 
good service in design in aerospace applications. By carefully fine-tuning 
the constants that the modeling provides, one will, for defined purposes, 
get very satisfactory results. So, why bother? However, if the aim is to 
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understand turbulence as a physical phenomenon, the answer is that 
turbulence modeling needs improvement. 

Assuming that adequate solutions to the Navier-Stokes-Reynolds 
equations could be found: Would, then, all questions in connection with 
turbulent flow be answerable? The answer to this question is no. The 
probability of a certain fluctuation being likely to exceed a certain limit is 
a feature of the flow that is beyond the grasp of these equations. Even so, 
it is the opinion of the present author that our understanding of turbulent 
flow would be greatly enhanced if turbulence modeling could be brought to 
a state of refinement so that the closure gap could be bridged. Great 
consolation is found in the fact that Lumley [7] seems to support this idea. 

One must contemplate the feasibility of finding a solution to bridge the 
closure gap. A generally valid relationship between the Reynolds stresses 
and the flow field in any form that would be applicable both in the free 
field and in the boundary layer regions seems to be out of the question. 
A reasonable approach would therefore seem to be to establish experi- 
mental support for turbulence modeling that remains valid in as great a 
generality as can reasonably be expected. 

The preceding sections have presented some scattered pieces of infor- 
mation which are thought to give ideas to be applied in the search for 
improved turbulence modeling. Most of the modeling done today is based 
on the rather elementary idea that the diffusion process can be conceived 
of as a "flux = turbulent transport coefficient • gradient to a driving field" 
(Fourier analogy). In most cases the turbulent energy appears as the 
parameter. Persen [8] discussed the shortcommings of this approach, and 
the purpose of the present considerations is to suggest an alternative 
approach where needed. 

Sections 2 and 3 place emphasis on the mechanical energy equation 
and draw attention to the fact that mean viscous stresses can do 
"recoverable" work and that this is especially important in recirculating 
flows. In potential flow this work is zero (Section 5). 

Section 4 references experimental results which indicate that turbulent 
energy is transported very much like kinetic energy in the mean flow, a 
result that is further supported by the theoretical evidence referred to in 
Section 6. 

Section 7 references further experimental evidence in strong support of 
the fact that turbulent energy is being conveyed downstream in a free flow 
field in the same way as the kinetic energy in the main flow. 

This leads to the following postulates for an improved modeling: 

a. Distinction must be made between cases with near wall flows and 
free flow fields. 
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b. When the free flow field is approximately a potential flow, the 
model must reflect that the mean viscous stresses do not perform 
recoverable work. Whether the Reynolds stresses do or do not is 
uncertain and is left for experimental investigations. 

c. If the flow is stationary and recirculating (streamlines are closed 
loops), the total work is dissipated. The dissipated energy must be 
supplied from outside the system. This makes the k-e model 
inadequate in its elementary form. 

d. The turbulent boundary layer is characterized by its two regions: 
the wall region and the wake region. In the latter the development 
downstream resembles that of the free turbulent jet. Consequently 
the suggested relation in Eq. (28) ought to apply and the model 
should reflect this. It is emphasized that the relation needed to 
make Eq. (28) into a proper phenomenological relation is not 
specified here. 

e. Whenever the modeling implies deduction of a differential equa- 
tion for the turbulent energy, the fact that turbulent energy may 
be created by a "point of line source" (Fig. 11) must be specified 
in the boundary conditions. 

It is clear that these considerations will have to be followed up by 
specifications, where these have been left open here. 

A final remark that may give food for thought is; Why is it that the 
flow in a turbulent boundary layer on a flat plate can be adequately 
described analytically without any consideration being given to the 
behavior of the turbulent energy or its boundary conditions? 

NOMENCLATURE 

Ao 
b ~/2 
b(O) 1/2 
E~ 

Er 

f(,7) 
F(r/), H(r/) 
Lchar 
m, n 

Constant 
Jet's half-width 
Jet's half-width at z = z 0 
Kinetic energy contained in the jet's axial velocity at a 

given profile 
Kinetic energy contained in the jet's radial velocity at a 

given profile 
Dimensionless velocity profile [ f ( 0 ) =  1] 
Defined functions 
Jet's characteristic length 
Exponents 

840/14/4-4 
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P 
q 
q 
q2 

G ~, Z 
t 
fi 

No 
Splate 
U(0) 

r 

x , Y , Z  
W 
W1 
W2 
ZO 

P 
~x" 
~Ty 

O'z. 

"~ xy' 

72),z 

~ zx 
O' 

O" x 
frO 

rl y/bl/2 J 
qo 

22 
Z3 
A 

Pressure 
Kinetic energy in the turbulent fluctuations 
Heat flux 
= U't t  p -.[- V~V ' q- W ' W  ~ 

Cylindrical coordinates 
Time 
Internal energy 
Velocity components 
Mean velocity components 
Mean velocity components 
Constant 
Plate's velocity 
Centerline velocity at z = Zo 
Components of body force 
Total work done by surface stresses 
Recoverable work done by surface stresses 
Dissipated work 
Downstream distance from the nozzle beyond which self- 

similar velocity profiles occur 
Fluid's kinematic viscosity 
Fluid's density 

Normal stresses 

Shear stresses 

Normal stresses with the pressure removed 

Dimensionless Crossflow 

coordinate 
Constant 

Stress functions 

"Stress potential" 
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